Search results for "Riesz basi"

showing 3 items of 3 documents

A Note on Riesz Bases of Eigenvectors of Certain Holomorphic Operator-Functions

2001

Abstract Operator-valued functions of the form A (λ) ≔ A − λ + Q(λ) with λ ↦ Q(λ)(A − μ)− 1 compact-valued and holomorphic on certain domains Ω ⊂  C are considered in separable Hilbert space. Assuming that the resolvent of A is compact, its eigenvalues are simple and the corresponding eigenvectors form a Riesz basis for H of finite defect, it is shown that under certain growth conditions on ‖Q(λ)(A − λ)− 1‖ the eigenvectors of A corresponding to a part of its spectrum also form a Riesz basis of finite defect. Applications are given to operator-valued functions of the form A (λ) = A − λ + B(λ − D)− 1C and to spectral problems in L2(0, 1) of the form −f″(x) + p(x, λ)f′(x) + q(x, λ)f(x) = λf(x…

Dirichlet problemPure mathematicsApplied MathematicsMathematical analysisHolomorphic functionHilbert spaceeigenvectorsoperator-functionRiesz basisSeparable spacesymbols.namesakeDirichlet boundary conditionsymbolsCauchy's integral theoremAnalysisEigenvalues and eigenvectorsMathematicsResolventJournal of Mathematical Analysis and Applications
researchProduct

Generalized Riesz systems and orthonormal sequences in Krein spaces

2018

We analyze special classes of bi-orthogonal sets of vectors in Hilbert and in Krein spaces, and their relations with generalized Riesz systems. In this way, the notion of the first/second type sequences is introduced and studied. We also discuss their relevance in some concrete quantum mechanical system driven by manifestly non self-adjoint Hamiltonians.

Statistics and ProbabilityPure mathematics46N50 81Q12FOS: Physical sciencesGeneral Physics and AstronomyStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Mathematics::Spectral TheoryRiesz basisBiorthogonal sequenceModeling and SimulationPT -symmetric HamiltonianKrein spaceOrthonormal basisSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsJournal of Physics A: Mathematical and Theoretical
researchProduct

Riesz-like bases in rigged Hilbert spaces

2015

The notions of Bessel sequence, Riesz-Fischer sequence and Riesz basis are generalized to a rigged Hilbert space $\D[t] \subset \H \subset \D^\times[t^\times]$. A Riesz-like basis, in particular, is obtained by considering a sequence $\{\xi_n\}\subset \D$ which is mapped by a one-to-one continuous operator $T:\D[t]\to\H[\|\cdot\|]$ into an orthonormal basis of the central Hilbert space $\H$ of the triplet. The operator $T$ is, in general, an unbounded operator in $\H$. If $T$ has a bounded inverse then the rigged Hilbert space is shown to be equivalent to a triplet of Hilbert spaces.

Unbounded operatorMathematics::Classical Analysis and ODEsInverse01 natural sciencesCombinatoricssymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsOrthonormal basisRigged Hilbert spaces0101 mathematicsMathematicsBasis (linear algebra)Applied MathematicsOperator (physics)010102 general mathematicsHilbert spaceRigged Hilbert spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisBounded functionsymbols010307 mathematical physicsAnalysisRiesz basi
researchProduct